
J. Fluid Mech. (2007), vol. 590, pp. 117–146. c© 2007 Cambridge University Press

doi:10.1017/S0022112007008002 Printed in the United Kingdom

117

Inertial-range intermittency and accuracy of
direct numerical simulation for turbulence and

passive scalar turbulence

TAKESHI WATANABE1,2 AND TOSHIYUKI GOTOH1,2

1Graduate School of Engineering, Department of Engineering Physics, Nagoya Institute of Technology,
Gokiso, Showa-ku, Nagoya, 466-8555, Japan

2CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

(Received 9 August 2006 and in revised form 19 June 2007)

We examine the effects of the variation in dissipation-range resolution on the
accuracy of inertial-range statistics and intermittency in terms of the direct numerical
simulations of homogeneous turbulence and passive-scalar turbulence by changing
the spatial resolution up to 20483 grid points while maintaining a constant
Reynolds number at Rλ � 180 or � 420 and Schmidt number at Sc = 1. Although
large fluctuations of the derivative fields depended strongly on Kmaxη and were
underestimated when Kmaxη � 1, where Kmax is the maximum wavenumber in the
computations and η is the mean Kolmogorov length, the behaviour of the spectra
and the scaling exponents of the structure functions up to the eighth order in the range
of scales greater than 10η was insensitive to variations in Kmaxη, even when Kmaxη � 1.
The relationship between the spatial resolution and asymptotic tail of the probability
density functions of the energy dissipation fields was studied using the multifractal
model for dissipation, and the results were confirmed by comparison to the simulation
data. Degradation of the statistics arises from modifications to the flow dynamics due
to the finite wavenumber cutoff and the use of a coarser filter width for the data, which
is obtained using a reasonable accuracy criterion for the flow dynamics. The effect
of the former was less than that of the latter for the low-to-moderate-order statistics
when Kmaxη � 1. We also discuss the universality of the inertial-range statistics with
respect to variations in the dissipation-range characteristics.

1. Introduction
Recent increases in the power of high-performance computers have been very

dramatic and have enabled us to examine more complicated phenomena, such
as turbulence, accompanied by wider dynamic scale ranges and multiple physical
processes. Direct numerical simulation (DNS) is becoming a very powerful tool to
investigate the various dynamical and statistical aspects of turbulence (Pope 2000).
Once the turbulent flow field has been obtained numerically, various types of data that
are sometimes difficult to access experimentally are easily computed and can provide
very useful and important knowledge about the turbulence dynamics and statistics.
The detailed images obtained from DNS stimulate us and provide new insight into
turbulent flow fields, although these images should be interpreted with caution.

The accuracy of DNS is important in the analysis of turbulence and has been
discussed since these simulations were first performed. A prevailing criterion for the
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numerical accuracy of DNS is that the smallest scales of the turbulent motion must
be adequately resolved on the grid. The size of these scales is conventionally estimated
in terms of the mean Kolmogorov length,

η =

(
ν3

ε

)1/4

, (1.1)

where ν is the kinetic viscosity and ε is the average rate of energy dissipation per unit
mass. If the velocity field is expanded using a Fourier series by assuming periodic
boundary conditions in the three directions, which is a common procedure in the DNS
of homogeneous turbulence, the above accuracy requirement may be expressed as
η/�x ∼ Kmaxη > 1, where Kmax ∼ 1/�x is the maximum wavenumber of the truncation
of the Fourier series expansion. In many DNS of homogeneous isotropic turbulence,
Kmaxη =1–2 is chosen for physical and economical reasons (Wang, Chen & Brasseur
1999; Yeung, Xu & Sreenivasan 2002; Gotoh, Fukayama & Nakano 2002; Kaneda
et al. 2003; Yeung, Donzis & Sreenivasan 2005).

The Kolmogorov dissipation length is derived from dimensional arguments. It is
useful to define the local Kolmogorov length η(x, t) = (ν3/ε(x, t))1/4 by replacing ε

of (1.1) with the local value of ε(x, t) = (ν/2)(∂iuj + ∂jui)
2. This means that large

fluctuations in ε(x, t) lead to small η(x, t) and that regions exist in which the velocity
field is under-resolved because η(x, t) fluctuates around η. Sreenivasan (2004) and
Yakhot & Sreenivasan (2005) pointed out that the conventional criterion for the
resolution of the mean Kolmogorov length is inaccurate and the strong intermittency
in the energy dissipation poses a more stringent resolution requirement for DNS than
Kmaxη =1–2.

The most stringent condition for resolving the smallest Kolmogorov scale is

Kmaxηmin > 1, (1.2)

where ηmin is the smallest dissipation scale defined by

ηmin =

(
ν3

εmax

)1/4

=

(
εmax

ε

)−1/4

η (1.3)

and εmax is the largest value of ε(x). If we apply multifractal theory to the energy
dissipation intermittency (see the Appendix or Meneveau & Sreenivasan 1991), εmax

can be evaluated using
εmax

ε
∼ R6(1−αmin)/(3+αmin)

λ , (1.4)

where Rλ is the Taylor-microscale Reynolds number and α is the local singularity
exponent defined by εr ∼ ε(r/L)α−1 (see (A 6) in the Appendix) (Meneveau &
Sreenivasan 1991; Frisch 1995). The exponent αmin represents the minimum value
in the distribution of α, which based on experiments is approximately αmin � 0.3
(Meneveau & Sreenivasan 1991), while the Kolmogorov theory (Kolmogorov 1941)
yields the constant value of α = 1. The most intermittent case is given by αmin = 0
and ηmin ∼ R−1/2

λ η � η when Rλ � 1, so that Kmaxηmin ∼ R−1/2
λ Kmaxη > 1 requires

Kmaxη >R1/2
λ , a very severe limitation. It is reasonable to assume that any physical

quantities that have spectral support near the dissipation-wavenumber range are
contaminated by insufficient resolution and that even the inertial-range statistics
suffer from under-resolution effects in the dissipation range.

Although similar arguments can be applied to a passive scalar convected by
turbulence, the DNS accuracy requirements are more stringent. The mean Batchelor
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length ηB = (κ2ν/ε)1/4 varies with the Schmidt number Sc = ν/κ , where κ is the scalar
diffusivity, which is related to the mean Kolmogorov length η as

ηB = Sc−1/2η. (1.5)

When the Schmidt number is greater than unity, a reasonable DNS resolution criterion
for the scalar field becomes much harder to satisfy. Even for the case of Sc = 1, i.e.
η = ηB , a passive-scalar DNS should satisfy the stronger condition Kmaxη � 1.4 rather
than Kmaxη = 1 (Wang et al. 1999; Yeung et al. 2002, 2005). Wang et al. (1999) have
shown that the scaled peak wavenumber kθ

pη = 0.25 of the dissipation spectrum for
the scalar variance is greater than that for the kinetic energy, kpη � 0.16; the ratio
is kθ

p/kp =1.4. This is due to the efficient transfer of the scalar variance and the
more non-local nature of the triad interaction (Gotoh & Watanabe 2005). The scalar
dissipation field for the scalar variance, defined by χ(x) = κ(∂iθ)2, also fluctuates
more intermittently than the energy dissipation, and its intermittency effects on the
accuracy of the DNS are more substantial (Chen & Cao 1997; Mydlarski & Warhaft
1998; Warhaft 2000; Shraiman & Siggia 2000).

Schumacher, Sreenivasan & Yeung (2005) have investigated the very fine structures
and statistics of the scalar dissipation field χ (εθ in their paper). For Rλ =10 and
24, and Sc =2, 8, and 32, they examined the effects of the spatial resolution of the
scalar field on the statistics by changing the spatial resolution from Kmaxη ≈ 8.4 to
33.6. The probability density function (PDF) of χ from a lower-resolution DNS
slightly underestimated the PDF curve from a finer-resolution DNS at both small
and large amplitudes, although the two PDF curves collapsed at medium amplitudes.
The generalized dimension Dq at negative q of χ from the lower-resolution DNS
was less than that of the finer-resolution DNS, indicating that the calm region was
affected more by the lower resolution. Since the asymptotic tail of the PDF is linked
to any sharpening of the PDF peak through normalization, it is quite plausible that
poor resolution affected the peak of the PDF as well as the tail. They also suggested
that the most intense scalar dissipation does not necessarily occur in the very fine
scalar dissipation structures.

The study of Schumacher et al. (2005) was made at low Reynolds numbers and the
Schmidt number Sc =2–32, where the dissipation fields of the energy and scalar
variance were well resolved, but no inertial or inertial convective ranges were
established. In many cases, recent high-resolution DNS have been performed to
investigate the dynamical and statistical laws of (scalar) turbulence in the inertial
and inertial convective ranges at very high Reynolds numbers. To achieve a Reynolds
number that is as high as possible and a scaling range that is as wide as possible, most
DNS have been (and will be) performed using the resolution condition of Kmaxη ≈ 1.
If under-resolution in the (scalar) dissipation range affects the statistics and dynamics
in the inertial (or larger scale) range, it is critical to know to what extent the turbulent
dynamics are sensitive to the variation in Kmaxη, or what statistics of velocity and
scalar fields are sensitive or insensitive to the effects of the dissipation intermittency.
Before engaging in further high-resolution DNS research, we should determine the
extent to which the value of Kmaxη is minimized in a DNS with a reasonable degree of
accuracy (Gotoh et al. 2002; Kaneda et al. 2003). To our knowledge, no comprehensive
studies have examined the energy and scalar dissipation intermittency effects on the
accuracy of DNS with a special emphasis on the statistics in the inertial and inertial
convective ranges.

We performed two series of DNS at Rλ = 180 and 420 by varying only the grid
spacing �x (or the maximum wavenumber Kmax) while leaving the other conditions
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unchanged, and examined changes in the resulting statistical behaviour. This is
similar to the study of Schumacher et al. (2005) but with a special focus on the
scaling properties of the velocity and scalar fields in the inertial-range scale. We
quantitatively examined how the variation of �x/η (Kmaxη) affected the behaviour of
statistics in scales larger and smaller than η.

This paper is organized as follows. Section 2 describes the DNS performed in
the present study. Section 3 presents the results of a statistical analysis of the DNS
data, where the Kmaxη dependences of the derivative statistics (§ 3.1), behaviour of
the spectra and transfer fluxes (§ 3.2), scaling properties of the structure functions
at lower orders (§ 3.3) and higher orders (§ 3.4), and the variations in the velocity
and scalar-increment PDFs (§ 3.5) are examined in detail. Section 4 examines the
relationship between the asymptotic tails of the dissipation PDFs and the spatial
resolution. The origin of the statistical degradation is studied. The implications of the
present results regarding the variation of Kmaxη are also discussed. We summarize
the results and give our conclusions in § 5.

2. Direct numerical simulations
The incompressible velocity field ui(x, t)(i = 1, 2, 3) and the scalar field θ(x, t) are

assumed to be governed by the Navier–Stokes and advection–diffusion equations,

(∂t + uj∂j )ui = −∂iP + ν∂2
j ui + fi, ∂iui = 0, (2.1a, b)

(∂t + uj∂j )θ = κ∂2
j θ + fθ , (2.2)

respectively. We considered only the case with a Schmidt number Sc =1 throughout
this paper so that there were equal contributions from the molecular action to the
small-scale nature of the velocity and scalar fields. The terms fi and fθ are the
external solenoidal Gaussian random force and scalar sources, respectively. They had
spectral support in the low-wavenumber band 1 � |k| � 2 to maintain a statistical
steady state (see Gotoh et al. 2002; Watanabe & Gotoh 2004). Equations (2.1a, b) and
(2.2) were numerically integrated in a periodic box of size L = 2π. A pseudospectral
method was used for the nonlinear and convective terms, and the time integration
was performed using a fourth-order Runge–Kutta–Gill method.

In the present study, the two series of DNS were characterized by two Taylor-
microscale Reynolds numbers. For each Reynolds number, the grid size �x = 2π/N

(or maximum wavenumber Kmax =
√

2N/3) was the only control parameter. N is the
number of grid points in one direction. The DNS parameters and the time-averaged
fundamental statistics are summarized in table 1. The series of lower Rλ (referred to as
series L runs) consisted of runs L1 (N = 256, Kmaxη = 1.0), L2 (N = 512, Kmaxη = 2.0),
and L3 (N = 1024, Kmaxη = 3.8). The series of higher Rλ (referred to as series H
runs) consisted of runs H1 (N =1024, Kmaxη = 1.1) and H2 (N = 2048, Kmaxη = 2.2).
We obtained turbulent states with Rλ � 180 for the series L runs and Rλ � 420 for
the series H runs, irrespective of N . A portion of the results for the series L runs
has already been discussed in a previous study (Watanabe & Gotoh 2006a), and the
detailed results for run H1 can be found in Watanabe & Gotoh (2004). The kinetic
energy and scalar variance are defined by

E =
1

2

〈
u2

i

〉
=

∫ ∞

0

E(k) dk, Eθ =
1

2
〈θ2〉 =

∫ ∞

0

Eθ (k) dk, (2.3a, b)
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Run L1 L2 L3 H1 H2

N 3 2563 5123 10243 10243 20483

Rλ (= P λ) 176 ± 17 178 ± 10 180 ± 8 427 ± 10 414
ν (= κ) 1.3 × 10−3 1.3 × 10−3 1.3 × 10−3 2.4 × 10−4 2.4 × 10−4

η(×10−3) 8.3 ± 0.3 8.2 ± 0.2 7.8 ± 0.2 2.20 ± 0.03 2.27
Kmaxη 1.0 2.0 3.8 1.1 2.2
Tav 21.16 4.35 3.61 2.43 −

E 1.68 ± 0.17 1.76 ± 0.07 1.94 ± 0.09 1.97 ± 0.09 1.79
ε 0.468 ± 0.066 0.501 ± 0.040 0.593 ± 0.046 0.591 ± 0.030 0.519
ε̂ 0.477 ± 0.056 0.472 ± 0.034 0.496 ± 0.034 0.464 ± 0.008 0.466
−Su 0.507 ± 0.006 0.542 ± 0.004 0.555 ± 0.014 0.558 ± 0.004 0.599
λ 0.217 ± 0.015 0.214 ± 0.010 0.206 ± 0.007 0.0895 ± 0.0008 0.0910
L 1.20 ± 0.08 1.19 ± 0.05 1.23 ± 0.07 1.18 ± 0.03 1.17

Eθ 0.88 ± 0.13 0.85 ± 0.11 0.78 ± 0.11 0.99 ± 0.11 0.71
χ 0.502 ± 0.082 0.485 ± 0.066 0.456 ± 0.049 0.598 ± 0.038 0.493
χ̂ 0.324 ± 0.042 0.319 ± 0.043 0.321 ± 0.040 0.315 ± 0.035 0.370
−Suθ 0.430 ± 0.014 0.520 ± 0.005 0.515 ± 0.018 0.443 ± 0.005 0.507
λθ 0.118 ± 0.008 0.117 ± 0.006 0.115 ± 0.008 0.0488 ± 0.0024 0.0457
Lθ 0.770 ± 0.079 0.777 ± 0.072 0.781 ± 0.099 0.826 ± 0.073 0.657

Table 1. DNS parameters.

where E(k) and Eθ (k) are the spectra for the kinetic energy and scalar variance,
respectively. The angle brackets 〈· · ·〉 indicate the spatial and temporal averages. The
duration of the temporal average was Tav, which is the integration time normalized
by the large-eddy turnover time Teddy =L/

√
2E/3 during steady state. The mean

dissipation rates for E and Eθ are

ε =
ν

2
〈(∂iuj + ∂jui)

2〉, χ = κ〈(∂iθ)2〉, (2.4a, b)

and the skewness or mixed skewness of the longitudinal velocity and scalar gradients
are defined by

Su =
〈(∂1u1)

3〉
〈(∂1u1)2〉3/2

, Suθ =
〈(∂1u1)(∂1θ)2〉

〈(∂1u1)2〉1/2〈(∂1θ)2〉 . (2.5a, b)

Several characteristic scales, such as the integral scales, L = (3π/4E)
∫ ∞

0
k−1E(k) dk

and Lθ =(π/2Eθ )
∫ ∞

0
k−1Eθ (k) dk, Taylor microscales, λ=

√
〈u2

1〉/〈(∂1u1)2〉 and

λθ =
√

〈θ2〉/〈(∂1θ)2〉, and the Kolmogorov and Batchelor scales, η and ηB , were almost
identical, irrespective of N , provided that Rλ remained unchanged. The errors given
for the averaged quantities in tables 1 and 2 and the error bars shown in figures 2 and
10 were estimated from the standard deviations of the temporal fluctuations in the
quantities during the averaging time. In all runs, the normalized mean dissipations
ε̂ = εL/u3

rms and χ̂ = χL/urmsθ
2
rms, where urms =

√
2E/3 and θrms =

√
2Eθ , respectively,

roughly converged with respect to Kmaxη, although some fluctuations were observed
in their values. Deviations in the average values of ε̂ and χ̂ in runs L3 and H2 from
those of other runs were due to the non-stationary effects in urms and θrms, which
are quantities dominated by large scales with longer time variations and thus easily
affected when the averaged time is short. The statistical data obtained from the finest
DNS (run H2) was evaluated by analysing a single snapshot of the velocity and scalar
fields because of the limited amount of available computational time. Therefore, we
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could not evaluate errors due to the temporal average. This implies that the large-
scale statistics were poorly converged compared to run H1 and that we must exercise
caution when analysing them.

3. Results
3.1. Effects on the derivative statistics

It is reasonable to assume that the statistics of the velocity and scalar gradients are
sensitive to variations in the grid size �x. The finiteness of the spatial resolution
manifests itself during the post-processing to compute the derivative field from the
raw field data, such as the dependence on the order of the finite difference method,
even when the equation of motion is adequately integrated, and in modifications to the
actual turbulence dynamics or the dynamics of the attractor of the equation of motion
by limiting the functional space. Since the differentiation in the present study was
performed using inverse Fourier transformations, e.g. ∂1θ =

∑
k ik1θ(k) exp(ik · x), the

numerical error was minimized. The DNS of the turbulence in terms of the spectral
method was therefore adequate to address the second issue. Since the spatial resolution
limit is given by a number, Kmax , it is easy to control the accuracy of the DNS.
Changing Kmax affects the variation in the degrees of freedom contributing to the
dynamics, especially to the dissipation, and thus strongly influences the details of the
attractor contributing to the strong intermittency. We first quantitatively examined
the resolution effects on the behaviour of the one-point PDFs and the normalized
moments for several derivative fields. The effects on the modification of the dynamics
will be discussed in more detail in § 4.2.

Figure 1 compares normalized PDFs for the longitudinal velocity gradient ∂1u1

(denoted by L), transverse velocity gradient ∂2u1 (T ), and scalar gradient ∂1θ (θ)
obtained for all runs. The probabilities in their asymptotic tails increased with increase
of Kmaxη. To examine this behaviour quantitatively, the variation of the normalized
moments M2q = 〈z2q〉/〈z2〉q with the order of q for the series L runs is shown in
figures 2(a) (z = ∂1u1) and 2(b) (z = ∂1θ). The Kmaxη dependence of M2q became more
significant as q increased, which corresponded to the sensitivity of rare events to the
variation of Kmaxη, as shown in figure 1. A comparison of the normalized fourth-
order moments (flatness) M4 =Fα (where α denotes labels L, T , and θ) obtained for
the series L runs is summarized in table 2. The values from runs L1 and L2 were
underestimated compared to those of run L3. Similar trends were also observed for
the series H runs. To investigate the resolution effects on small amplitudes of the
fluctuations, the central parts of the curves in figures 1(a) and 1(c) were magnified
and plotted on a linear scale in figure 1(d ). The ∂1θ curve for run L1 was considerably
lower than the ∂1θ curves for runs L2 and L3, which is in sharp contrast to the small
differences among the curves for ∂1u1. This observation implies that both strong and
weak fluctuations of the scalar gradient field are more sensitive to variations in Kmaxη,
unlike the velocity gradient field, and thus the resolution effects are more significant
in the scalar dissipation, as described by Schumacher et al. (2005).

Next, we investigated the PDFs for the dissipation fields ε(x) and χ(x). Figure 3
shows the behaviour of the PDFs for ε/ε and χ/χ from the series L runs. The
probabilities of rare events increased with increase of Kmaxη. From the finest-resolution
DNS (run L3), we roughly estimated εmax/ε ∼ 300, and found that ηmin ∼ η/4,
i.e. Kmaxηmin � 1 at Rλ = 180. Therefore, the condition for run L3 approximately
satisfied the most stringent DNS resolution requirement, as discussed by Sreenivasan
(2004). Figure 3 also indicates that χ/χ is more intermittent than ε/ε because the
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Figure 1. Kmaxη dependences of the one-point PDFs for the (a) longitudinal velocity gradient
∂1u1, (b) transverse velocity gradient ∂2u1, (c) scalar gradient ∂1θ , and (d ) magnification of the
PDFs at small amplitudes of the fluctuations ∂1u1 and ∂1θ for the series L runs. The curves for
runs H1 and H2 in (a–c) are multiplied by a factor of 10 for clarity, and the curves for ∂1u1

in (d ) are shifted by adding a factor of 0.8 to their original values. Note that the curve near
the end of tail of PDF for both series runs in (a–c) moves upward as the resolution increases.

FL FT Fθ 〈(ε/ε)2〉 〈(χ/χ)2〉 〈(ε/ε)3〉 〈(χ/χ)3〉

Run L1 5.72 ± 0.09 8.39 ± 0.11 11.2 ± 0.4 2.66 ± 0.04 6.24 ± 0.22 16.5 ± 1.0 110 ± 16
Run L2 5.99 ± 0.05 8.90 ± 0.13 15.3 ± 0.7 2.80 ± 0.03 8.28 ± 0.35 20.0 ± 0.5 204 ± 20
Run L3 6.61 ± 0.18 9.67 ± 0.30 16.1 ± 0.3 3.05 ± 0.08 8.75 ± 0.18 26.6 ± 2.1 243 ± 13

Table 2. Flatness factors for ∂1u1 (L), ∂2u1 (T ), and ∂1θ (θ ), and second- and third-order
moments for the energy and scalar variance dissipations ε/ε and χ/χ . The errors were
evaluated from the standard deviation of the temporal fluctuations over Tav .

rare fluctuations in χ/χ had larger probabilities than those of ε/ε. This feature
was also quantitatively confirmed by the moments listed in table 2. The same
PDF curves are plotted using a logarithmic scale for both axes in the inset plots
of figure 3 to emphasize the resolution effects on the weak fluctuations around
their means. The PDFs were almost independent of Kmaxη over the range of
0.1 <ε/ε < 10 and 0.1 <χ/χ < 10. However, the weak intensity of the fluctuations,
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Figure 2. Kmaxη dependences of the normalized moments M2q = 〈z2q〉/〈z2〉q from the series L
runs (Rλ = 180) for (a) the longitudinal velocity gradient ∂1u1 and (b) scalar gradient ∂1θ . For
comparison, M2q for velocity u1 and scalar θ are also shown. Error bars were estimated from
the standard deviations of the temporal fluctuations in the quantities during the averaging
time. Note that the curve for ∂1u1 and ∂1θ moves upward as the resolution increases.

such as ε/ε, χ/χ < 0.1, were also under-resolved, as shown previously for Sc = 32 and
Rλ = 10 (Schumacher et al. 2005).

The results obtained in this section can be summarized as follows. The high-
order statistics of derivative fields depend significantly on Kmaxη. Many studies on
turbulence statistics have focused on the Rλ dependences of the skewness and flatness
factors of the velocity and scalar gradients (Monin & Yaglom 1975; Warhaft 2000).
The present results suggest that the high-order statistics of derivative fields obtained
using a low-resolution DNS, such as runs L1 or H1, should be analysed with great
care because the data are generally underestimated. Rλ in the present DNS was much
higher than that used by Schumacher et al. (2005), but the resolution effects on the
dissipation statistics were similar. Therefore, the resolution effects on the derivatives
of the passive scalar are significant not only at midrange Rλ and Sc but also for high
Rλ and Sc =O(1).
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Figure 3. Kmaxη dependences of the PDFs for the (a) kinetic energy dissipation ε/ε and
(b) scalar variance dissipation χ/χ from the series L runs. The inset shows the same plots
using logarithmic scales for both axes. Note that the curve at the far tail of PDF moves
upward as the resolution increases.

3.2. Effects on the spectral behaviour

When the Reynolds number is very large, an inertial range (IR) exists in the velocity
field and an inertial convective range (ICR) in the scalar field (Kolmogorov 1941;
Obukhov 1949; Corrsin 1951). The kinetic energy and scalar variance spectra can be
expressed in terms of the Kolmogorov–Obukhov–Corrsin (KOC) theory as

E(k) = ε2/3k−5/3Ê(kη), (3.1)

Eθ (k) = χ ε−1/3k−5/3Êθ (kηB, Sc), (3.2)

where Ê(x) and Êθ (x, y) are non-dimensional functions and it is expected that
Ê(x) = K and Êθ (x, 1) = COC for x � 1. Note that η = ηB because Sc =1. The
constants K and COC are the Kolmogorov and Obukhov–Corrsin constants,
respectively. Figure 4 shows Ê(kη) and Êθ (kη, 1) obtained for all runs. The flat
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Figure 4. Behaviour of the compensated spectra: (a) kinetic energy spectrum Ê(x) (3.1) and
(b) scalar variance spectrum Êθ (x, 1) (3.2) from the series L (Rλ =180) and H (Rλ = 420)
runs. The horizontal line corresponds to K = 1.61 and COC = 0.68, which were evaluated from
the results of run H1 (Watanabe & Gotoh 2004). The inset shows the normalized dissipation
spectra (3.5a, b) for both cases.

behaviour is easily seen in the range 0.008 � kη � 0.03, where the constants were
evaluated from run H1 to obtain K =1.61 and COC = 0.68 (Watanabe & Gotoh
2004). The value K = 1.61 agrees well with the experimental value 1.62 (Sreenivasan
1995) and the previous DNS value 1.64 (Gotoh et al. 2002) though recent DNS and
atmospheric observation with higher Rλ than that in the series H runs represent steeper
spectra than k−5/3 (Kaneda et al. 2003; Tsuji 2004). The value COC =0.68 is consistent
with 0.67 which is the value recommended from many experiments (Sreenivasan
1996) and the higher-Rλ passive scalar DNS with a mean scalar gradient (Yeung
et al. 2005). Except for the range k ∼ Kmax , the curves from each series collapsed very
well, irrespective of Kmaxη, and those of the series L runs nicely followed the results
of the series H runs. These results strongly suggest that the spectra E(k) and Eθ (k)
for wavenumbers below kη =0.8 were computed accurately, even when the condition
Kmaxη =1 was used for runs L1 and H1.
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The spectral equations for the kinetic energy and the scalar variance are expressed
as

d

dt
E(k, t) + D(k, t) = T (k, t) + F (k, t), (3.3)

d

dt
Eθ (k, t) + Dθ (k, t) = Tθ (k, t) + Fθ (k, t), (3.4)

in terms of the energy and scalar-variance dissipation spectra

D(k) = 2νk2E(k), Dθ (k) = 2κk2Eθ (k), (3.5a, b)

the kinetic-energy transfer function T (k), and the scalar-variance transfer function
Tθ (k) arising from the nonlinear and convective terms in (2.1a, b) and (2.2). The
functions F (k, t) and Fθ (k, t) are spectra of the external injections. The transfer fluxes
of the kinetic energy and the scalar variance are defined by

Π(k) =

∫ ∞

k

T (k′) dk′, Πθ (k) =

∫ ∞

k

Tθ (k
′) dk′, (3.6a, b)

respectively. The normalized dissipation spectra at various resolutions are plotted in
the inset of figure 4 for both Rλ cases. The spectra D(k) and Dθ (k) around k ∼ Kmax

for runs L1 and H1 were significantly affected by the truncation of the Fourier series.
In particular, Dθ (k) was contaminated more than D(k). However, the curves in the
range 0.02 � kη � 0.8, where D(k) and Dθ (k) contribute to most of the ε and χ , were
insensitive to the variation in Kmaxη and Rλ. Figure 5 shows the transfer fluxes, for
which no significant Kmaxη dependences were visible across the entire wavenumber
range except the integral scales for run H2. These results suggest that the resolution
effects on the behaviour of the second- and third-order statistics in wavenumber
space were negligible for the entire wavenumber range except k ∼ Kmax . Thus, we
assume that the accuracy of the passive scalar turbulence in a DNS is satisfactory in
the lower-order statistics ranging from the ICR to the dissipation range, even when
Kmaxη = 1.

We investigated resolution effects on the spectral behaviour over the dissipation
range of 0.5 <kη < 4. Several studies have examined the spectral form of the energy
and scalar variance over this range (Kerr 1990; Chen et al. 1993; Pope 2000; Ishihara
et al. 2005). The functional forms of E(k) and Eθ (k) in the dissipation range are

E(k) = C(kη)α exp(−βkη), Eθ (k) = Cθ (kηB)αθ exp(−βθkηB), (3.7a, b)

respectively, where C (Cθ ), α (αθ ), and β (βθ ) are constants that may depend on Rλ,
Sc, and the wavenumber range (e.g. Ishihara et al. 2005). To test the form of (3.7a, b)
and examine any resolution effects, it is useful to define the local slopes of E(k) and
Eθ (k) by

d log E(k)

d log k
= α − β(kη),

d log Eθ (k)

d log k
= αθ − βθ (kηB). (3.8a, b)

Figure 6 shows the local slopes of E(k) and Eθ (k) obtained for the series L runs,
where the derivative in (3.8a, b) is approximated by the finite difference of E(k) (and
Eθ (k)) after smoothing the zigzag curves. As shown in figure 6, we could not observe
a significant resolution dependence of the local slopes over the range 0.5 <kη < 3.
The same trends were also observed for the series H runs (figures not shown). If the
functional form of (3.7a, b) is correct, the curves of the local slopes will appear as
straight lines according to (3.8a, b). However, figure 6 indicates that the local slopes
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Figure 5. Kmaxη dependences of the normalized transfer fluxes (3.6a, b) for the (a) kinetic
energy and (b) scalar variance. The horizontal line corresponds to unity.

for both E(k) and Eθ (k) bend slightly and cannot be fitted by a single straight line over
the range 0.5 <kη < 3. If we restrict ourselves to the wavenumber range 0.5 <kη < 1.5
for E(k) and 0.2 <kηB < 1.5 for Eθ (k), we obtain an estimate of (α, β) = (−2.2, 4.1)
and (αθ , βθ ) = (−0.9, 4.5). In the deeper dissipation range of 2 <kη < 3, the constants
are (α, β) = (−4.3, 2.9) and (αθ , βθ ) = (−3.9, 3.1).

It is interesting to note that the rate of the exponential decay of E(k) is slightly less
than that of Eθ (k), and that the width of the fitting range for Eθ (k) is wider than that
of E(k). Although the total strain from the wavenumber components below kd ∼ 1/η̄

is responsible for the average decay of both spectra in the dissipation range, and the
local strong fluctuations of the dissipation dominate the decay rate in the far deeper
dissipation range because E(k, x) ∝ exp(−kη̃(x)) in the subregion of a periodic box
with centre x (Kraichnan 1967; Chen et al. 1993), it is not clear whether the difference
in the decay exponents for the body of the dissipation range survives when Sc = 1
and the Reynolds number becomes larger. Detailed discussions of the spectral forms
in the dissipation range for several Schmidt and Reynolds numbers can be found in
the spectral theory (Batchelor, Howells & Townsend 1959; Kraichnan 1968; Goto &
Kida 1999; Gotoh, Nagaki & Kaneda 2000) and DNS (Kerr 1990; Chen et al. 1993;
Bogucki, Domaradzki & Yeung 1997; Schumacher et al. 2005; Ishihara et al. 2005)



Inertial-range intermittency and accuracy of direct numerical simulation 129

–16

–14

–12

–10

–8

–6

–4

–2

–16

–14

–12

–10

–8

–6

–4

–2

0

0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

dl
og

E
(k

)/
dl

og
k

(a)

L1
L2
L3

––4.3 – 2.9kη
–2.2 – 4.1kη–

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

dl
og

E
θ
(k

)/
dl

og
k

kη–

(b)

L1
L2
L3

–0.9 – 4.5kη–

–3.9 – 3.1kη–

Figure 6. Variations in the local slopes of (a) E(k) and (b) Eθ (k) against kη from the series L
runs. The functional forms predicted by (3.7a, b) correspond to the straight lines in each figure,
where the parameters (α, β) and (αθ , βθ ) are evaluated by curve-fitting over each wavenumber
range.

studies. Since the dissipation range width in our DNS was not sufficiently long, we
do not discuss this point further.

3.3. Effects on the second- and third-order structure functions

The structure functions Sα
q (r) (where α denotes the labels L, T , θ, and θL) for the

longitudinal velocity increment δur (L), transversal velocity increment δvr (T ), scalar
increment δθr (θ), and mixed velocity–scalar increment δurδθ

2
r (θL) are defined as

follows:

SL
q (r) = 〈|δur |q〉, ST

q (r) = 〈|δvr |q〉, (3.9a, b)

Sθ
q (r) = 〈|δθr |q〉, SθL

q (r) =
〈∣∣δurδθ

2
r

∣∣q/3〉
. (3.9c, d)

The KOC theory suggests the following scaling forms:

SL
q (r) = (εr)q/3ŜL

q

(
r

η
,
L

η

)
, ST

q (r) = (εr)q/3ŜT
q

(
r

η
,
L

η

)
, (3.10a, b)
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Sθ
q (r) = (χ 3/2ε−1/2r)q/3Ŝθ

q

(
r

η
,
L

η

)
, SθL

q (r) = (χr)q/3ŜθL
q

(
r

η
,
L

η

)
, (3.10c, d)

where Ŝα
q (x, y) is a non-dimensional function that is asymptotically Ŝα

q (x, ∞) =
constant for x � 1 if the KOC theory is correct. The compensated second-order
structure functions Ŝα

2 are shown in figure 7. In contrast to the rise in the spectra near
kη =1 for runs L1 and H1, as shown in figure 4, no significant Kmaxη dependence of
Ŝα

2 was observed over the entire range. At r/η = 2 ∼ 5, the slope of every curve was
approximately 4/3, which implies that Sα

2 (r) ∝ r2 for very small r . A small deviation
in run L3 and H2 curves from the others observed for r > L arose because a statistical
convergence was not sufficiently established at this scale due to an insufficient time
average.

Next, we examined the resolution effects on the third-order structure functions. The
structure function equations can be derived exactly from the fundamental equations
of motion (2.1a, b) and (2.2) by assuming statistical isotropy and homogeneity as
follows:

〈
δu3

r

〉
= −4

5
εr + 6ν

d

dr

〈
δu2

r

〉
+ F (r), (3.11)

〈
δurδθ

2
r

〉
= −4

3
χr + 2κ

d

dr

〈
δθ2

r

〉
+ Fθ (r), (3.12)

where F (r) and Fθ (r) are derived from the external force or injection, respectively.
In the scale ranges η � r � L for (3.11) and ηB � r � L for (3.12), the second
and third terms on the right-hand sides are much less than the first term. Thus,
(3.11) and (3.12) yield asymptotically exact statistical laws, the so-called 4/5 and 4/3
laws: 〈δu3

r 〉 = −(4/5)εr and 〈δurδθ
2
r 〉 = −(4/3)χr , respectively (Yaglom 1949; Monin &

Yaglom 1975). Figure 8 shows the variations in −〈δu3
r 〉/εr and −〈δurδθ

2
r 〉/χr with r/η

obtained from the present DNS. The plateaux of the compensated 4/5 and 4/3 laws
obtained from the series L runs are narrower than those obtained from the series H
runs because of the lower Rλ. The curves for all runs were again almost independent
of Kmaxη, except over range r >L. The difference of curves over the range of r >L
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was due to the difference of the length of averaging time among them. The results
described in this section suggest that low-order statistics in physical space are less
sensitive to variations of Kmaxη than cases in wavenumber space.

3.4. Effects on high-order structure functions

As the order of the structure functions Sα
q (r) increases, the scaling in the ICR

deviates from the KOC predictions and the intermittency becomes more noticeable
(e.g. Warhaft 2000; Watanabe & Gotoh 2004). This also implies that the Kmaxη

dependences of the structure functions become more significant at higher orders.
Figure 9 shows the DNS results for (a) ŜL

q , (b) ŜT
q , (c) Ŝθ

q , and (d) ŜθL
q for q =4

and 8. The width of the scaling ranges for the series L runs was not as wide as that
for the series H runs because Rλ = 180 was not sufficiently large for a clear ICR to
prevail compared to the case when Rλ = 420 (Watanabe & Gotoh 2004). Over the
range r < 10η, the slope of the structure functions varied slightly for different Kmaxη;
the difference became more significant as q increased. Over the range r > 10η, ŜL

q and
ŜT

q appeared to be almost independent of Kmaxη up to q = 8 as long as Rλ remained

constant. However, we observed differences in the amplitudes of Ŝθ
q and ŜθL

q , even
though their functional forms were similar, irrespective of Kmaxη.

If we write the structure functions as Sα
q (r) = Cα

q rζα
q over the scaling range η � r � L,

the above observations may be summarized as follows: (i) the effects of the Reynolds
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Ŝ

qT
(r

/η– ,L
/η– )

Ŝ
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Figure 9. Kmaxη dependences of higher-order structure functions normalized by the KOC
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q with q = 4 (lower curves) and q =8 (upper

curves). The curves for Ŝθ
8 in (c) are multiplied by a factor of 0.02 to reduce the plotting range.

number and resolution appeared mostly in the prefactor Cα
q ; (ii) these effects were

less apparent on the slope of the curves; (iii) for a given order q , the prefactor
increased with the Reynolds number; and (iv) the scatter of the prefactor due to
variations in the resolution was more significant in the scalar and scalar flux than
it was in the longitudinal and transverse velocity. Items (i)–(iii) indicate that the
amplitudes (or prefactors) are Reynolds-number-dependent. Therefore, they are not
universal for variations in large-scale conditions (Watanabe & Gotoh 2006b). The
resolution dependence of the prefactors noted in item (iv) indicates a sensitivity
to the dissipation scales. These facts imply that the rare-event statistics for scalar
fluctuations are greatly affected by both the large- and small-scale conditions. The
observed scatter of the prefactors for Sθ

q (r) and SθL
q (r) may be better explained by the
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Figure 10. Kmaxη dependences of the local slopes for (a) ζL
q (r), (b) ζ T

q (r), (c) ζ θ
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q (r). The curves in each figure correspond to q = 4, 6 and 8 from bottom to top. Error
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at each scales during the averaging time. The curves for q = 6 and 8 are shifted by adding a
factor of 1 and 2, respectively, to their original values.

sensitivity of rare-event statistics to large-scale conditions, which are controlled by the
duration of the temporal average, rather than their sensitivity to resolution effects.
In the present study, the length of the temporal average decreased as the resolution
increased, resulting in different large-scale conditions due to changes in the temporal
average. Further examination is required using more reliable statistical data to draw
a definite conclusion about the influence of the resolution on the prefactors.

The resolution effects on Sα
q (r) were investigated more carefully in terms of

the scaling behaviour by examining their local slopes ζ α
q (r) defined by ζ α

q (r) ≡
d ln Sα

q (r)/d ln r . The variations in ζ α
q (r) with r/η for q = 4, 6 and 8 are shown in

figure 10. The error bars were estimated from the standard deviations of temporal
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fluctuations in the local slopes computed from the instantaneous velocity and scalar
fields. The mean errors due to the temporal fluctuations increased with increase of
the scale separation r , indicating a different convergence of statistics with respect to
the variation in the scale r . The curves for run L3 confirm that the structure functions
behave as Sα

q (r) ∼ rq over the range r < η. This indicates that the velocity and scalar
fields obtained by the DNS with Kmaxη � 4 (run L3) were adequately resolved and
sufficiently smooth for scales less than η. As expected, the curves for r < 10η were
sensitive to Kmaxη, which became more significant as q increased. However, the local
slopes almost collapsed to a single curve, even at q = 8, over the range r > 10η. The
local scaling exponents over the range 10 < r/η < 50 obtained from the series L runs
were very close to those obtained from the series H runs. These findings can be
summarized as follows: (i) the local scaling exponents for 10η < r � L converge to
values different from those predicted by the KOC theory when the Reynolds number
increases, and (ii) the dissipation intermittency does not affect the scaling behaviour of
the structure functions over the scaling range of r > 10η. These facts strongly suggest
that local scaling exponents up to the eighth order over the range of 10 <r/η < 50
are independent of both the large and dissipation scales of motion, demonstrating
the universality of the scaling exponents over the inertial range.

It is interesting to compare the scale 10η to the characteristic scales of a vortex
tube or cliff of the scalar field (Jimenez et al. 1993; Warhaft 2000). In turbulence,
an intense vortex tube has a diameter of approximately 8–10η (Jimenez et al. 1993).
The mean width of a cliff in low-temperature helium gas turbulence is (13 ± 3)η for
Rλ ranging from 100 to 650 (Moisy et al. 2001). These values are in good agreement
with the scale 10η. Therefore, it is reasonable to assume that a DNS with Kmaxη = 1
can accurately compute the local scaling exponents of the structure functions up to
the eighth order for scales greater than 10η as long as the Schmidt number is unity.

3.5. Effects on the velocity and scalar-increment PDFs

We examined the resolution effects on the behaviour of PDFs for the velocity and
scalar increments. Figure 11 compares the normalized PDFs for (a) δur and (b) δθr

at a separation distance r . Curves at a smaller separation distance correspond to
PDFs with longer tails. The figure indicates that the asymptotic tails for δur tend to
become wider as Kmaxη increases. The PDFs for δur became less sensitive to variations
in Kmaxη and approached a normal distribution as the scale r increased. However,
for a scalar increment, the asymptotic tails of the PDFs varied with the resolution,
even at scales larger than 10η, although the PDF form for r > 10η around the most
probable part was again insensitive to variations in Kmaxη. This is demonstrated in
figure 12. The form of the asymptotic tails of the PDFs was strongly related to
large jumps in the scalar field, which were controlled by both large- and small-scale
conditions; i.e. the structure of the cliffs in the scalar field were affected by small-scale
conditions while the spatial distribution of the cliffs was influenced by the large scales
of motion (Watanabe & Gotoh 2006b). Therefore, the possibility of a dependence
of higher-order statistics at large scale on the dissipation-scale dynamics cannot be
ruled out.

The behaviour of the PDF curves near the most probable part of figure 11 is
plotted in figure 12 using linear scales. The weak intensity of fluctuations at scales
smaller than 10η changed with the resolution, especially for the scalar increment.
The differences between curves at r < 10η (curves at r = L/256 and L/128) were
more significant for δθ than for δu, as would be expected from figure 1(d ). However,
for separation distances larger than 10η, the results collapsed to almost the same
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Figure 11. Kmaxη dependences of the normalized PDFs for the (a) longitudinal velocity
increment (δur ) and (b) scalar increment (δθr ). The curves are multiplied by a factor of 10p
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scale 10η is about L/80 for the series L runs and L/290 for the series H runs, respectively.

curve for both δu and δθ . Thus, we conclude that the resolution effects for low-order
statistics of the velocity and scalar increments when q � 1 are negligibly small for the
scales of the ICR.

4. Discussion
4.1. Resolution effects on derivative statistics in terms of multifractal theory

We showed in § 3.1 that the resolution requirement for DNS is more stringent than the
conventional condition Kmaxη = 1 if we require accurate higher-order statistics of the
derivative fields. The resolution effects are more significant for the asymptotic tail
behaviour of PDFs for derivative fields such as ∂1u1 and for dissipation fields.
Therefore, the resolution effects are closely related to the details of the dissipation
intermittency, as shown in the Appendix or Sreenivasan (2004). The PDF forms of
the velocity gradient are reproduced in terms of the multifractal model of turbulence
(Benzi et al. 1991), in which the asymptotic tail form of the PDF is controlled by
the minimum value of a singularity exponent αmin. This suggests that the resolution
effects on the statistics of the derivative field can be studied by regarding αmin as a
cutoff filter that depends on the resolution.

The relationship between the resolution (�x) and the strongest singularity may be
given simply by (A 7) in the Appendix and the condition ηmin ≈ �x:

N ≡ L

ηmin

∼ R6/(αmin+3)
λ . (4.1)
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Equation (4.1) suggests that αmin is a monotonically decreasing function of N , i.e.
αmin(N) ∼ (6 lnRλ/ lnN)−3 (� 0) when the Reynolds number Rλ is fixed. In this case,
the resolution effects on fluctuations in energy dissipation can be represented using
(4.1) and (A 9):

ε

ε
∼ N (3+αmin(N))(1−α)/(3+α). (4.2)

If we restrict our interest to the asymptotic tail behaviour of the PDF in ε/ε, equation
(4.2) can be reduced to the form ε/ε ∼ N1−αmin(N) around ε ∼ εmax . The probability
Q(αmin) of finding αmin in the distribution of α in space is then simply evaluated
by introducing the f (α) spectrum as Q(αmin) ∼ Nf (αmin)/N3 = N−3+f (αmin). This leads to
the N-dependence of the asymptotic tail behaviour of P (ε

′
) for ε ′ = ε/ε:

ε ′P (ε ′) = (log N)−1N−3+f (αmin)h(ε ′/N1−αmin) (4.3)

for the range ε ∼ εmax , where h(x) is a non-dimensional scaling function. A possible
minimum value of αmin inferred from experimental and DNS data is αmin = 0 (Benzi
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Figure 13. Scaling plot of the PDFs of the normalized kinetic energy dissipation ε′ = ε/ε
obtained from the series L runs in terms of the resolution N .

et al. 1991). The geometry of the support for the spatial distribution of αmin is a point
at which the maximum value of ε occurs; i.e. we approximately evaluate f (αmin) � 0.
Figure 13 shows the scaling plot (4.3) with αmin = f (αmin) = 0 obtained using data from
figure 3(a). The collapse of the curves in the asymptotic tail region is satisfactory,
especially for runs L2 and L3. More details regarding the determination of PDF
forms can be obtained by applying several multifractal models for f (α) spectrum
(Benzi et al. 1991; Frisch 1995).

4.2. Resolution effects on turbulence dynamics

It is interesting to examine the resolution effects on the dynamics of turbulence and
passive-scalar turbulence. To obtain an insight into the degree of the changes in the
flow dynamics due to a finite resolution, it is useful to compare statistics from a
coarse-grained turbulence field obtained by filtering an original field computed using
the finest-resolution DNS with the statistics from a low-resolution DNS without
filtering. For this purpose, it is convenient to introduce a cutoff wavenumber kc in
the Fourier space such that the coefficients of the Fourier series expansion of the
velocity and scalar fields are decomposed into two components having smaller or
larger wavenumbers than kc as follows:

ui(k, t) = u<
i (k, t) + u>

i (k, t) = Fui(k, t) + (1 − F)ui(k, t), (4.4)

θ(k, t) = θ<(k, t) + θ>(k, t) = Fθ(k, t) + (1 − F)θ(k, t), (4.5)

where the spectral filter function F is defined using the Heaviside function H (x) as
F(k) = H (kc − k). Hereafter the time argument is omitted for brevity. The scales of
motion with k < kc are the grid scale (GS) and those with k > kc are the subgrid scale
(SGS), following large-eddy simulation (LES) terminology (Pope 2000). In a typical
LES, kc is located midway in the inertial range, but we consider the case with kc

located in the dissipation range.
The equations of motion for the GS components u<

i and θ< are

(∂t + νk2)u<
i (k) = N<

i (k) + R<
i (k), (4.6)

(∂t + κk2)θ<(k) = N<
θ (k) + R<

θ (k), (4.7)
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where the first term on the right-hand side of (4.6) and (4.7) is the filtered nonlinear
term composed from the GS components, which are defined by

N<
i (k) = FMiab(k)

∑
p,q

u<
a ( p)u<

b (q)δk, p+q, (4.8)

N<
θ (k) = F(ika)

∑
p,q

u<
a ( p)θ<(q)δk, p+q, (4.9)

with Miab(k) ≡ (i/2)(kaPib(k) + kbPia(k)) and Pia(k) ≡ δia − kika/k2. R<
i and R<

θ are
the residual terms defined by R<

i (k) = F(Ni(k) − N<
i (k)) and R<

θ (k) = F(Nθ (k) −
N<

θ (k)), in which Ni(k) and Nθ (k) represent the full nonlinear terms by
Ni(k) = Miab(k)

∑
p,q ua( p)ub(q)δk, p+q and Nθ (k) = ika

∑
p,q ua( p)θ(q)δk, p+q . As shown

by (4.6) and (4.7), the residual terms contribute to the GS dynamics from the
SGS dynamics, representing the interaction between GS and SGS components of ui

and θ .
Let us locate the cutoff wavenumber in the range 1/η < kc <Kmax . Dropping the

residual terms in equations (4.6) and (4.7) corresponds to the lower-resolution DNS
with the largest wavenumber kc without any SGS model. We want to examine how
R<

i and R<
θ affect the inertial- and dissipation-range statistics. To proceed with this

analysis, we further integrated run L3 for a duration of T =1.4Tav and gathered two
types of statistical data: those from the raw field with kc =Kmax and data from the
coarse-grained turbulence field with kc = Kmax/4 > 1/η̄, which was generated from the
same raw field.

Figure 14 compares the PDFs for the (a) longitudinal velocity gradient ∂1u1 and
(b) scalar gradient ∂1θ filtered with the different kc in run L3. The probability of
finding rare events decreased as the filtering scale increased. This trend is similar to
the observation made from figure 1, which represents the decrease in intermittency
with decrease of Kmaxη. It is interesting to compare the curves from run L1 in figure
1 to those evaluated using kc = Kmax/4 in figure 14. This trend is also shown in
figure 14. Both curves collapse to almost the same curve, although the curve for ∂1u1

deviates slightly from that obtained for run L1. This occurs because the curve of
kc = Kmax (bare field) in figure 14 is slightly different from that shown in figure 1 due
to the difference of the length of averaging time between them. The flatness factor
of ∂1u1 for kc = Kmax in figure 14 is FL = 6.12, which is less than the 6.61 given in
table 2. We also examined how much FL decreased in the lower-resolution DNS or
for a larger filtering scale. The ratio of the flatness factor for run L1 to that of run
L3 is 0.87 (∂1u1) and 0.70 (∂1θ) from table 2, which are comparable with the ratio of
the flatness factor for kc = Kmax to that for kc = Kmax/4, 5.62/6.12 = 0.92 for ∂1u1 and
11.9/16.1 = 0.74 for ∂1θ . These results indicate that the modifications to the dynamics
induced by discarding the SGS components consisted of about 5% reduction in the
flatness of the derivative fields. Most of this reduction may be attributable to the direct
effects of filtering the raw fields. These results suggest that when kcη > 1, the effects
of the residual terms arising from the SGS components are not significant in
the turbulence dynamics responsible for the low-to-moderate-order statistics of the
gradients of the velocity and scalar fields.

Figure 15 compares the square root of the spectra for the residual terms,

ER(k | kc) = 4πk2〈|R<
i (k)|2〉, ERθ

(k | kc) = 4πk2〈|R<
θ (k)|2〉, (4.10a, b)

and of the filtered nonlinear terms,

EN (k | kc) = 4πk2〈|N<
i (k)|2〉, ENθ

(k | kc) = 4πk2〈|N<
θ (k)|2〉. (4.11a, b)
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Figure 14. Comparison of the normalized PDFs for the (a) filtered velocity gradient ∂1u1 and
(b) filtered scalar gradient ∂1θ evaluated from the data of run L3. The cutoff wavenumber kc

is larger than the dissipation wavenumber 1/η as kc = kmax/4, which is comparable with the
largest wavenumber in run L1.

The curves for EN (k | kc) and ENθ
(k | kc) with kc =Kmax/2 and Kmax/4 collapse almost

perfectly on the curve of kc = Kmax (EN (k) and ENθ
(k)). The spectra ER(k | kc) and

ERθ
(k | kc) grew sharply as k approached the cutoff wavenumber kc and decayed

as ER(k | kc) ∝ (k/kc)
3.2 and ERθ

(k | kc) ∝ (k/kc)
3.0 when k moved to smaller

wavenumbers. The sharp rise in the ER(k | kc) and ERθ
(k | kc) is basically the same

phenomenon found in the eddy viscosity near the cutoff, as discussed in previous
spectral theory and DNS studies (Kraichnan 1976; Domaradzki & Rogallo 1990).
For kη < 0.2, the intensity of the residual terms in both the velocity and scalar fields
were negligibly small compared to the filtered nonlinear terms EN (k | kc) and ENθ

(k | kc),
even when kc = Kmax/4, as expected. This fact strongly supports the conclusion in the
previous section that the ICR statistics are insensitive to variations in the resolution
provided Kmaxη � 1.

4.3. Implications of the resolution effects

Several implications have arisen from our DNS turbulence resolution effects study.



140 T. Watanabe and T. Gotoh

101

100

10–1

10–2

10–3

10–4

10–5

10–6

10–7

101

100

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–2 10–1 100

10–2 10–1

–
100

E
N

(k
|k

c)
1/

2 , E
R
(k

|k
c)

1/
2

E
N

θ
(k

|k
c)

1/
2 , E

R
θ
(k

|k
c)

1/
2

Slope 1.6

(a)

Ni(k)

Ni
<(k|Kmax/2)

Ri
<(k|Kmax/2)

Ni
<(k|Kmax/4)

Ri
<(k|Kmax/4)

kη

Slope 1.5

(b)

Nθ
<(k|Kmax/2)

Rθ
<(k|Kmax/2)

Nθ
<(k|Kmax/4)

Rθ
<(k|Kmax/4)

Nθ(k)

Figure 15. Square root of the spectra for the nonlinear and residual terms that appear in
the equations of motion in terms of the filtered velocity and scalar fields for (a) velocity
N<

i (k) and R<
i (k) and (b) scalar N<

θ (k) and R<
θ (k). The curves for EN (k | kc) and ENθ

(k | kc)
with kc = Kmax/2 and Kmax/4 collapse almost perfectly on the curve of kc = Kmax (EN (k) and
ENθ

(k)).

First, knowing the resolution requirement to resolve the dissipation-scale eddies is
useful when we consider the accuracy of experimental measurements of a turbulence
signal or temperature fluctuations obtained using a probe, such as a hot wire. It is
known that the degree of resolving fine-scale structures in the velocity and temperature
fields depends strongly on the probe length l (Wyngaard 1968, 1971). If the probe
length is longer than η, any statistical quantities, such as the velocity gradients,
are averaged over the probe length, which corresponds to the case of run L3 with
kc < Kmax , as discussed above. Statistics with length scales greater than 10η can be
adequately obtained, for the low-to-moderate-order moments, corresponding to a
probe length l of l � η.

Second, the resolution problem in DNS can be considered from a universality
viewpoint. So far, the universality of turbulence has been argued based on the
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dependence of the small scales of motion on the large-scale conditions. However, in
the classical sense of Kolmogorov (1941), a key fact is that the energy dissipation
exists and is finite in the limit of zero viscosity, but the way the energy dissipates did
not enter into the arguments because the theory is constructed on the grounds of a
dimensional analysis, and no intermittency effects are taken into account. The inertial
range is defined as the range over which the statistics are independent of both the
large and dissipation scales of motion. However, in reality, intermittency exists and
influences the scales in between the largest and smallest scales of motion. Changing
kc (or Kmax) within the dissipation range can be interpreted as modifying the way for
the energy to dissipate. The findings in the present study suggest that if most of the
average dissipation rate is resolved in a DNS, the low-order statistics in the inertial
range, especially the low-to-moderate-order local scaling exponents, are universal to
variations in the dissipation.

5. Summary
We have examined the effects of variations in the dissipation-range resolution on

the inertial- and inertial-convective-range statistics for turbulence and passive-scalar
turbulence by performing DNS with several resolutions, where Kmaxη =1, 2, and 3.8
for Rλ =180 and Kmaxη =1 and 2 for Rλ =420. We discussed how variations in Kmaxη

affected the behaviour of the fundamental statistics, such as the one-point PDFs for
the velocity and scalar gradient fields, the kinetic energy and scalar variance spectra,
the structure functions, and the PDFs for the velocity and scalar increments over
scales ranging from η to L.

For one-point statistics, such as the gradients of the velocity and scalar fields,
the second- and third-order moments were insensitive to variations in Kmaxη. For
high-order statistics of the derivative fields, the results obtained from a low-resolution
DNS underestimated those from a high-resolution DNS. The contamination due to
the poor resolution was significant for the high-order statistics of the gradient fields
and for the statistics of the high-order derivatives.

Although the above-mentioned resolution effects on the fine-scale structure and
derivative statistics have been examined with great attention in recent studies
(Schumacher et al. 2005; Sreenivasan 2004; Yakhot & Sreenivasan 2005), further
insight into the resolution problem of DNS was obtained by focusing on the effects of
the dissipation-range resolution on the inertial-range statistics. For the low-order two-
point statistics, such as the spectra and second-order structure functions, no significant
Kmaxη dependences were observed over the entire scale range, except k ∼ Kmax and
r >L. Previously, the more stringent resolution requirement Kmaxη � 1.4 has been
used to ensure the passive-scalar turbulence accuracy of a DNS, rather than imposing
Kmaxη � 1.0 for the velocity only, even when Sc = O(1) (Wang et al. 1999; Yeung
et al. 2002; Sreenivasan 2004; Yeung et al. 2005). In the present results, however,
no significant difference between a low-resolution DNS (runs L1 or H1) and a high-
resolution DNS (runs L3 or H2) was detected for low-order statistics in the ICR. This
fact encourages us to choose Kmaxη = 1 when investigating the inertial-range statistics
by performing a higher-resolution DNS to better understand the ultimate turbulent
state, though it would be highly desirable to choose the more stringent resolution
condition when the fine-scale dynamics in turbulence or in turbulence mixing has the
greatest importance and significantly affects the dynamics over a wide range of scales.

The effects of the dissipation-range resolution on the inertial-range intermittency in
the velocity and scalar fluctuations were also investigated by examining the behaviour
of the high-order structure functions or the velocity and scalar-increment PDFs. The
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accuracy strongly depended on Kmaxη over the range r < 10η, but the structure func-
tions, especially the scaling exponents up to q = 8, were little affected by Kmaxη when
r > 10η. As shown in figure 10, the local scaling exponents for the high-Rλ series of
DNS had a finite plateau width in the scale range r > 100η, irrespective of Kmaxη. This
suggests that the condition Kmaxη =1 is acceptable to ensure the accuracy of the scal-
ing exponents of both the velocity and passive-scalar structure functions in the ICR.

The intermittency effects on the accuracy of the statistics can be viewed as the
problem of the universality of the inertial-range statistics to changes of the dissipation
range dynamics. When Kmaxη was approximately unity, the dissipation structure of
the velocity and scalar fields was modified and differed from what would be obtained
with an infinite resolution. This in turn indicates a modification to the means of
the energy and scalar-variance dissipation. Therefore, the insensitive nature of the
scaling exponents of the velocity and scalar-increment structure functions suggests an
independence of the scaling exponents of the dissipation range, although the degree of
independence depends on the order of the structure functions, the Reynolds number,
and the Schmidt number.

In this paper, we showed that there was insufficient statistical data provided by
run H2 which are constructed by a single snapshot. However this does not affect the
main conclusion of the present paper regarding the low-order statistics. As for the
structure functions at high order, it is desirable to obtain more converged statistical
data to draw a definite conclusion from them. Moreover we examined only the case
of Sc = 1. Since the resolution requirement of a DNS depends on Sc, it is necessary to
examine the accuracy conditions for a passive-scalar DNS with Rλ � 1 and a general
Sc case. Further computational resources are required to achieve Rλ � 1 and Sc � 1.
Such a study is left for the future.

We thank the Earth Simulator Center, the Theory and Computer Simulation Centre
of the National Institute for Fusion Science (NIFS05KTAT006), and the Information
Technology Centre of Nagoya University for providing the computational resources.
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Appendix. Multifractal theory for energy dissipation intermittency
In this Appendix, we derive (1.4) by applying the multifractal theory of turbulence

to the energy dissipation intermittency according to Sreenivasan (2004).
First we define the Reynolds numbers

RL =
urmsL

ν
, Rλ =

urmsλ

ν
, (A 1a, b)

where urms ∼ (εL)1/3. The definition of the mean Kolmogorov length (1.1) and (A 1a, b)
yields the well-known relationship

L

η
∼ R3/4

L ∼ R3/2
λ , (A 2)

where we use RL ∼ R2
λ and λ/L ∼ R−1/2

L . If we regard (L/η)3 as the degrees of freedom
N3 for the numerical turbulent motions, the relationship

Rλ ∼ N2/3 (A 3)

is obtained from (A 2). Equation (A 3) estimates the order of Rλ obtained by DNS
with N3 spatial grid points.
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The energy dissipation rate locally averaged over the sphere Vr = 4πr3/3 at the
centre x is given by

εr (x) =
1

Vr

∫
Vr

ε(x − x ′) dx ′. (A 4)

The quantity εr plays an important role in the phenomenological cascade theory of
turbulence via the refined similarity hypothesis proposed by Kolmogorov (1962), in
which the statistics of the velocity increment are determined by those of εr with
Rλ � 1. We define the local Reynolds number Rr at scale r as

Rr =
ε1/3
r r4/3

ν
. (A 5)

The statistical self-similarity based on the multifractal theory of turbulence or the
large-deviation theory (see Frisch 1995; Watanabe, Nakayama & Fujisaka 2000)
suggests that εr is represented by the scaling form

εr ∼ εL

( r

L

)α−1

, (A 6)

where εL = ε from the stationary condition of the system. The exponent α is the
singularity exponent. The statistics of εr for η � r � L are characterized by those of
the exponent α. Here we use the relationship (A 6) to the extent that (A 6) is satisfied
at scales up to r ∼ η.

We define the fluctuating small scale η, where the nonlinear energy transfer balances
with the kinetic energy dissipation, i.e. Rr ∼ 1 for r = η. The scale η is the local
Kolmogorov scale and fluctuates in space and time. We also set εη � ε because the
spatial variation of ε is adequately smooth for r ∼ η, where the maximum of η is the
order of η. Then (A 5) and (A 6) yield

L

η
∼ R6/(α+3)

λ . (A 7)

This form can be rewritten by using (A 2) as

η

η
∼ R−3(1−α)/[2(3+α)]

λ . (A 8)

Thus, we arrive at the form
ε

ε
∼ R6(1−α)/(3+α)

λ , (A 9)

where η/η ∼ (ε/ε)−1/4. The expression η ∼ ν3/4ε−1/4 is used to derive (A 9). In the
Kolmogorov scaling, εr does not depend on r , i.e. α = 1. Equation (A 9) leads to this
case: ε ∼ ε with α =1. The strongest intermittency of the dissipation fluctuations in
turbulence gives α = αmin, where ε has a largest value of εmax . The most stringent
requirement is the case of αmin = 0 (Sreenivasan 2004), which leads to

εmax

ε
∼ R2

λ. (A 10)

This relationship implies that εmax/ε increases in proportion to R2
λ. In addition, (A 7)

and (A 10) yield

Rλ ∼
(

L

ηmin

)1/2

. (A 11)

If we need to resolve the scales up to ηmin(< η) using DNS, the spatial grid points N

must be set using N = L/ηmin to ensure the accuracy of the computations. Equation
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(A 11) then estimates the largest Rλ that can be obtained by DNS. Note that exponent
1/2 is less than the value for the non-intermittent case, 2/3 in (A 3).

The scalar-dissipation scale with Sc � 1 can be obtained in a similar manner. We
define the local Batchelor scale ηB by

ηB =

(
νκ2

ε

)1/4

= Sc−1/2η. (A 12)

The degrees of freedom NB = L/ηB are evaluated using (A 7) and (A 12):

NB ∼
(

L

η

)(
η

ηB

)
∼ Sc1/2R6/(3+α)

λ . (A 13)

The prefactor Sc1/2 in (A 13) indicates that a more stringent DNS condition than
only velocity field is required to resolve the scalar field with Sc � 1. The relationship
between the Taylor-microscale Peclét number P λ defined by

P λ =
uLλ

κ
= ScRλ (A 14)

and NB is given by

P λ ∼ Sc(9−α)/12N
(3+α)/6
B . (A 15)

Equation (A 15) estimates P λ obtained using a DNS with a fixed Sc and NB . When
the energy-dissipation intermittency is negligible, i.e. α = 1, we obtain P λ ∼ Sc2/3N

2/3
B .

In contrast, P λ ∼ Sc3/4N
1/2
B is the case with the most intermittent energy dissipation,

which is obtained by substituting α = αmin = 0 into (A 15).
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